Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.

Identifieur interne : 000603 ( Main/Exploration ); précédent : 000602; suivant : 000604

Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.

Auteurs : Natalia V. Varlakhanova [États-Unis] ; Bryan A. Tornabene [États-Unis] ; Marijn G J. Ford [États-Unis]

Source :

RBID : pubmed:30156471

Descripteurs français

English descriptors

Abstract

TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.

DOI: 10.1091/mbc.E18-03-0158
PubMed: 30156471
PubMed Central: PMC6249832


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.</title>
<author>
<name sortKey="Varlakhanova, Natalia V" sort="Varlakhanova, Natalia V" uniqKey="Varlakhanova N" first="Natalia V" last="Varlakhanova">Natalia V. Varlakhanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tornabene, Bryan A" sort="Tornabene, Bryan A" uniqKey="Tornabene B" first="Bryan A" last="Tornabene">Bryan A. Tornabene</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ford, Marijn G J" sort="Ford, Marijn G J" uniqKey="Ford M" first="Marijn G J" last="Ford">Marijn G J. Ford</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30156471</idno>
<idno type="pmid">30156471</idno>
<idno type="doi">10.1091/mbc.E18-03-0158</idno>
<idno type="pmc">PMC6249832</idno>
<idno type="wicri:Area/Main/Corpus">000471</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000471</idno>
<idno type="wicri:Area/Main/Curation">000471</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000471</idno>
<idno type="wicri:Area/Main/Exploration">000471</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.</title>
<author>
<name sortKey="Varlakhanova, Natalia V" sort="Varlakhanova, Natalia V" uniqKey="Varlakhanova N" first="Natalia V" last="Varlakhanova">Natalia V. Varlakhanova</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tornabene, Bryan A" sort="Tornabene, Bryan A" uniqKey="Tornabene B" first="Bryan A" last="Tornabene">Bryan A. Tornabene</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ford, Marijn G J" sort="Ford, Marijn G J" uniqKey="Ford M" first="Marijn G J" last="Ford">Marijn G J. Ford</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Cell Membrane (drug effects)</term>
<term>Cell Membrane (metabolism)</term>
<term>Cell Nucleus (drug effects)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Feedback, Physiological (drug effects)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Mutation (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Protein Processing, Post-Translational (drug effects)</term>
<term>Protein Transport (drug effects)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Subcellular Fractions (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Fractions subcellulaires (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Mutation (génétique)</term>
<term>Noyau de la cellule (effets des médicaments et des substances chimiques)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Rétrocontrôle physiologique (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Systèmes de transport d'acides aminés (métabolisme)</term>
<term>Séquence conservée (MeSH)</term>
<term>Transport des protéines (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Membrane</term>
<term>Cell Nucleus</term>
<term>Feedback, Physiological</term>
<term>Protein Processing, Post-Translational</term>
<term>Protein Transport</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Maturation post-traductionnelle des protéines</term>
<term>Membrane cellulaire</term>
<term>Noyau de la cellule</term>
<term>Rétrocontrôle physiologique</term>
<term>Saccharomyces cerevisiae</term>
<term>Transport des protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Cell Nucleus</term>
<term>Saccharomyces cerevisiae</term>
<term>Subcellular Fractions</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Fractions subcellulaires</term>
<term>Membrane cellulaire</term>
<term>Noyau de la cellule</term>
<term>Protein kinases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Systèmes de transport d'acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Conserved Sequence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Motifs d'acides aminés</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30156471</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.</ArticleTitle>
<Pagination>
<MedlinePgn>2751-2765</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E18-03-0158</ELocationID>
<Abstract>
<AbstractText>TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Varlakhanova</LastName>
<ForeName>Natalia V</ForeName>
<Initials>NV</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tornabene</LastName>
<ForeName>Bryan A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ford</LastName>
<ForeName>Marijn G J</ForeName>
<Initials>MGJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM120102</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491145">GAP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000607163">Par32 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147682-31-3</RegistryNumber>
<NameOfSubstance UI="C066958">NPR1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025461" MajorTopicYN="Y">Feedback, Physiological</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013347" MajorTopicYN="N">Subcellular Fractions</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30156471</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E18-03-0158</ArticleId>
<ArticleId IdType="pmc">PMC6249832</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2018 Feb 7;82(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29436478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Sep 3;279(36):37512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jan;5(1):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Nov 23;276(47):43939-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 29;281(39):28546-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16864574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Oct;4(11):e351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17048990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jul 27;47(2):242-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2017 Dec;106(6):938-948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28976047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24476960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1979 Aug;175(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">390309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):924-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3065-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17308034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Jan 06;5:763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25610437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 May 5;7(5):1539-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28325812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4282-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Nov;19(11):7529-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):48-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2006;38(9):1476-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 23;8(1):1729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Aug 15;25(16):1668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Aug;14(5):683-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Apr 28;161(2):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Jul 14;11(7):e1005382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26172854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2004 Jun;28(3):319-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15449606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Mar;37(2):251-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Jun 29;37(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Jan;4(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):343-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Dec 5;20(12):2151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(1):35-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 08;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Jan;99(2):360-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26419331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Oct 9;290(41):24715-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26309257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 Nov 15;130(22):3878-3890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2002 May 15;290(1-2):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12062797</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Varlakhanova, Natalia V" sort="Varlakhanova, Natalia V" uniqKey="Varlakhanova N" first="Natalia V" last="Varlakhanova">Natalia V. Varlakhanova</name>
</region>
<name sortKey="Ford, Marijn G J" sort="Ford, Marijn G J" uniqKey="Ford M" first="Marijn G J" last="Ford">Marijn G J. Ford</name>
<name sortKey="Tornabene, Bryan A" sort="Tornabene, Bryan A" uniqKey="Tornabene B" first="Bryan A" last="Tornabene">Bryan A. Tornabene</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000603 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000603 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30156471
   |texte=   Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30156471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020